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A numerical model has been developed which can predict

the dynamic (and steady state) performance of a wave

rotor, given the geometry and time dependent boundary

conditions. The one-dimensional, perfect gas, CFD based

code tracks the gas dynamics in each of the wave rotor

passages as they rotate past the various ducts. The model

can operate both on and off-design, allowing dynamic
behavior to be studied throughout the operating range of

the wave rotor. The model accounts for several major loss

mechanisms including finite passage opening time, fluid
friction, heat transfer to and from the passage walls, and

leakage to and from the passage ends. In addition it can
calculate the amount of work transferred to or from the

fluid when the flow in the ducts is not aligned with the

passages such as occurs in off-design operation. Since it is
one- dimensional, the model runs reasonably fast on a

typical workstation. This paper will describe the model

and present the results of some transient calculations for a

conceptual four port wave rotor designed as a topping cycle
for a small gas turbine engine.

The wave rotor is being investigated for use as a core gas

generator in future multi-spool gas turbine engines in order

to achieve high peak cycle temperatures and pressures with
conventional materials technology. The device, shown

schematically in Fig. 1 uses gasdynamic waves to transfer

energy directly to and from the working fluid through
which the waves travel. Many descriptions of wave rotor

operating principles exist in the literature (see Ref. 1 for a
list), and one will not be provided here.

The wave rotor is inherently an unsteady device in that

gasdynamic waves are continually traversing the passages
as they rotate within the casing. However, aside from the

periodic fluctuations arising from the opening and closing

of the passages as they enter and exit port regions, the

flows in the ports are steady as long as the external

boundary conditions are constant in time. This condition
shall be referred to as steady state operation. Referring to

Fig. 1, the external boundaries would include the
combustor fuel flow, the upstream compressor discharge
state, the downstream turbine inlet state, and the rotor

speed.
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Figure 1 Schematicofa fourportwave rotor

Although the steady-state performance of the wave rotor

appears promising for topping conventional gas turbine
engines, 2"4 critical questions concerning transient and

dynamic performance remain. For example, how does the

wave rotor respond to fuel flow changes? Does a wave
rotor exhibit instabilities such as surge? How does

transient behavior compare with that of conventional

turbomachinery? To answer these and other questions, a

numerical model has been developed which predicts the

dynamic state of the fluid in all of the passages of the wave

rotor as they are exposed to time dependent conditions in
the various ports. The passages are assumed to have

uniform properties at any cross section (i.e. one
dimensional flow), and the gas is assumed calorically and

thermally perfect. Besides predicting the unsteady gas

dynamics which govern the wave rotor operation, the

model is capable of assessing losses induced by viscosity,

heat transfer to and from the passage walls, the finite

opening time of the passages as they enter and exit port
regions, non-uniformities in the port flows, and gas leakage

between the passage ends and the stationary walls to and

from the cavity in the center of the rotor. *'7 It is also

capable of calculating the off-design work transfer which

occurs when the flow in the ducts is not aligned with the

rotor passages (i.e. flow turning). Since all of the passages

are tracked simultaneously it is also possible to calculate
the instantaneous torque on the drive shaft (and the

acceleration of the rotor shaft if no drive motor is present).

The combustor, the cavity in the center of the wave rotor,
and the rotor wall metal have much longer response times

than the gasdynamic waves in the rotor passages and have

thus been modeled using lumped volume techniques. To
the authors' knowledge, this model represents the first
transient wave rotor simulation in the literature.



Thispaperwilldescribe the model. Results from several

example simulations will be then presented and discussed,

followed by some closing remarks.

Much of the passage gasdynamic modeling has been
described in other references. L5-_ In these papers only a

single passage of the wave rotor was followed as it rotated
about the circumference; however, the approach to the

internal flow is exactly the same in the present multi-

passage model. As such, equations will be repeated here
for reference, but will not be discussed.

Governing F_uations

The governing equations in the passages are assumed to be
of the form
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These equations have been non-dimensionalized using a

reference state p', p', and a', where a" is the speed of
sound, and the ratio of specific heats, y. In this form the

perfect gas law may be written as p=pT. The distance has

been scaled by the passage length, L, and the time has been

scaled using the wave transit time, --.L For all of the
g*

results to be presented, the reference state is the wave rotor

inlet stagnation state (port 1 in Fig. 1). The source vector
S(._.) accounts for viscous effects (i.e. friction), heat

transfer from the passage walls to the gas, and leakage from

the passages to the hollow center cavity of the rotor and to

the ports. Leakage is assumed to occur only at the ends of

any passage. Thus, for the intermediate region where there
is no leakage the source vector may be written as

I°
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where Db is the passage hydraulic diameter, h is the

passage height, Pr is the Prandfl number, T is the gas static

temperature, and T,_ is the passage wall temperature. The

term 02isa semi-empericallyderivedconstant7based on

thepassagegeometry and referenceconditions:

(5)

The dynamic viscosityisassumedconstanL The thirdterm

of the source vectorin Eqn. 4 is derived from the

Reynolds-Colburnheattransfer,skinfi'ictionanalogyswith

heat wansfer assumed to occur only from the upper and

lower surfaces of the passage and not from the sides.

For the ends of the passage where leakage occurs, the
source vector is written as

,:,.Io,,I>)]
_ v, 28_ To@_ P_
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orifice equation 9, p_, is the pressure of the gas in the rotor
center cavity, 6,._. is the gap between the rotor and casing
endwall, Ax is the non-dimensional grid spacing used in

the computational scheme to be described below (it is
assumed that the leakage gap is much smaller than the grid

To is the gas stagnation
2,

spacing), V2 =

temperature,and CD is the seal dischargecocfficient_

assumed here to he 0.8. If the cavity pressure is greater

than cell pressure then the pressure ratio in Eqn. 6 is

inverted, the sign changes, and p, p, Tobecome those of the

rotor center cavity.

Eqn. 1 isintegrated numerically using the following Lax-

Wen&off technique described in ReL 1:

_-m/Ax
(7)

where the numerical flux estimate _.wis

C- cAl.,s:,•2 2
(8)

and the numerical source _ is

,_= 1_S:- _"). (9)

The term _= in Eqn. 8 refers to the flux limited

dissipation based on Roe's _°approximate Riemann solver

for equation 1 without a source vector. The matrix [A] is
the Jacobian of the flux vector F. The superscript n



indica_s the discrete temporal index nat, and the subscript

i indicates the spatial index iAx. Unless otherwise stated

all results to be presented in this report used a ratio of
zlt/Ax =0.3, with Ax=0.02. The leakage source term, Eqn.

6, is applied to the first and last cell in the computing
domain.

Passage Wall Temperature

The wall temperature for each computational cell of each

passage is updated using simple Euler integration on a

lumped capacitance model of the wall section via

T _*l T" + [a, [_tl_ + o2(r,__ T,_I]A tv'_li = "roll [-"rlV 3 ]i

-T t 8._) t P,,,_)
n _ O't

where, 5,,_, c,,_, and P,_a are the wall thickness, specific

heat and non-dimensional density, respectively; Cpis the

gas specific heat at constant pressure (assumed constant),
R is the rotor radius, p_, is the non-dimensional center

cavity gas density, s3_- is the third term of the intermediate

region source vector (F_xln. 4), and _ is the rotor speed.
The coefficient (1)2is the product of the Fourier and Biot
moduli s for the outer surface of the wall. The heat transfer

coefficient in 4)2 was derived from a correlation for steady
turbulent flow over a flat plate it with the fiat plate length

replaced by the rotor circumference. Use of a crude

integration scheme in Eqn. 10 while using a time accurate

scheme for Eqn. 7 is justified since the time constants
associated with transients in the wall temperature (and

those of the gas in the center cavity and combustor to be

discussed below) are much larger than the passage wave
transit time or even the time for one complete wave cycle.

Center Cavity_

The gas state in the rotor center cavity is also integrated

using a simple lumped capacitance technique. Changes in

the gas state arise due to heat transfered from the rotor
inner and outer wall surfaces and due to leakage from the

passage ends. The cavity density and pressure may be

integrated using continuity and energy equations written in
the form

N _ link
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where N is the number of passages, M is the last

computational cell in the passage computing domain, b is

the passage width, V_, is the volume of the center cavity,

and the subscript k refers to the individual passages. The
wave rotor casing is assumed adiabatic. The gas in the

center cavity is assumed to have negligible kinetic energy.

Combustor

The combustor density and pressure are modeled similarly
to the center cavity except that there is an allowance for

heat addition in the energy equation, i.e.

tl*l n bhL

,,.
p_*l p_ [(bhL'_ (T * ]lr,,.'l_
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where Q is the heat addition rate, V,_ is the combustor

volume, T_., is the non-dimensional combustor exit
temperature, and T,_ is the non-dimensional combustor inlet

stagnation temperature obtained from

T2-- ÷ (13)
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Refering to Fig. 1, the integers N_o and N_ indicate

summations over those passages which are exposed (or

partially exposed in the case of finite opening time) to the

eombustor outlet port and combustor inlet port

respectively.

The combustor pressure and temperature obtained from

eqns. 12 and 13 are used as updated inlet stagnation
conditions for those rotor passages which are exposed to

the combustor outlet port at the next time step (i.e. inflow

boundary conditions, see Refs. 5 and 7). The passages

exposed to the combustor inlet port (i.e. outflow boundary
conditions) require an updated static pressure. This is

obtained by first estimating the stagnation pressure for the

gas just upstream of the combustor using the following

equation

(14)

where bd is the circumferential span of the combustor inlet

port, P, is the mixed static density of the combustor inlet

port flow (see appendix 1), and O_mis a constant value



greater than 1 which provides a so called "cold' loss in
addition to the loss which is incurred by simply heating the

gas at constant velocity and static pressure as is assumed in
this combustor model. The value of _bdused here is 2.05.

With the combustor inlet stagnation pressure known, the

estimated rotor face static pressure required by the model

is obtained using the following steady isentropic relation

Pd = P_ (15)

where P"is the mixed static pressure of the combustor inlet

port flow (see Appendix 1).

Boundary Conditions

Implementation of boundary conditions in the model is
discussed in detail in refs. 5-7 and will not be presented

here. Suffice it to say that the boundary conditions account

for the effect (loss) of finite opening time as each passage

enters and exits a port region, and the effect of flow turning

when the nominally steady flow in the port is not aligned
with the flow in the wave rotor passages. Furthermore, the

boundary conditions allow computations to continue in

extreme off design situations where portions of the port

flows may be reversed from their intended directions. The

torque on the rotor may be calculated at any instant of time
by summing the product of mass flow rate and the change

in tangential velocity from the duct to the adjacent

computational cell over all the passages with inflow.

Example Wave Rotor Descriotion and Steady State
Beha_or

The wave rotor chosen for this paper has been 'designed' as

a 4 port topping cycle for a 2.3 kg/s (5 lbm/s) engine, with
an upstream compressor pressure ratio of approximately 8.

The design technique used is described in Ref. 4. Table 1

Table 1 Wave rotor dimensions and design performance

Mean RotorRadius 8.15 cm. (3.2 in.)

Rotor Length 15.24 cm (6.0 in.)

Rotor Passage Height 2.24 cm. (0.88 in.)

Rotational Speed 16800 rpm

Cycles/Revolution 2

Number of Passages 52

Mass Flow Rate 2.3 kg/s (5.0 lbnds)

PdP t (Fig. 1 or 2) 1.22

T4/T I 2.21

_circum ferenthtl position

(3)

(1)

Figure 2 Design point density contours

xlL

shows the relevant dimensions and design point

performance. Fig. 2 illustrates the design point wave

pattern using contours of density plotted as a function of

circumferential and axial distance. This may be thought of

as a time averaged view (i.e. averaged over the time

required for a passage to open) of the standing wave
pattern that a stationary observer would see. Although not

directly related to dynamic performance, it is interesting to

note that the flow going to the combustor (port 2) is a

mixture of both compressed fresh air from the inlet (port 1)
and hot gas that did not escape from the rotor during the

exhausting process (port 4). This 'exhaust gas recirculation'

is a unique aspect of this particular type of four port cycle.
There are other configurations in which it does not occur 3.

It is not known at this point whether it represents an

advantage or disadvantage in terms of combustor design

and/or pollution control.

Steady state performance

Before discussing dynamic results, it is worthwhile to

briefly review the steady state wave rotor characteristics.

Doing so provides a reference against which to measure the
deviations from normal operation exhibited by the dynamic

simulations. Assuming perfect gas behavior and constant

dynamic viscosity, the steady state performance of a wave

rotor topping cycle can be described in terms of the ratio of

specific heats, ¥, and following three dimensionless
variables:

N=oF A_

_c= "___ [RsT=

Q- Q

(16)

where _., A_., Pro, and T_, are the wave rotor inlet (port 1
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Figure 3 Constant speed, steady state performance map

in Fig. 2) mass flow rate, cross sectional area, stagnation

pressure and stagnation temperature respectively, Rg is the

real gas constant and g_ is the Newton constant. The fast
two variables are essentially corrected speed and corrected
mass flow rate. The last variable, corrected heat addition,

is not normally used to describe turbomachinery

performance (although it could be) because the compressor

and turbine components are usually considered separately.

This is not possible on the wave rotor however, since

compression and expansion occur on the same device and

are highly coupled. Given )" and the variables of Eqn. 16,
any other variable of interest can be represented as a
dimensionless function of these four. For instance, from a

steady-state topping cycle operability point of view, one

would be interested in knowing the stagnation pressure and

temperature ratios across the entire wave rotor as functions
of these variables. Refering to Fig. 1, this would be PJP_

and T4/Tm. If, as is done in the model, y is assumed

constant, then one independant variable would be
eliminated. A multi-dimensional map would still be

required however, which is difficult to envision. It has
been observed in cycle deck studies of the type of wave

rotor topping cycle under consideration here3 that, for small

turboshaft engines, optimal performance is found along a
constant corrected speed line for most of the operating

range (neglecting startup and idle modes). Furthermore,

although the effect that off-design flow turning has on

performance can be large _, the amount of work done on the

gas is relatively small compared to the heat addition. If this
shaft work is neglected, then the temperature ratio may be
obtained from the corrected mass flow rate and heat

addition as

TI k y / m=

Thus, the desired wave rotor performance may be

expressed on a single plot which shows overall pressure
ratio as a function of corrected mass flow rate for different

families of corrected heat addition. Such a map is shown

in Fig. 3 for the particular wave rotor described above.

This map was generated using the single passage, steady

Combustor

Pi= Wave Rotor

Tin _L

Figure 4 Block schematic of simulation

state model described in Refs. 1, 5-7 and verified at several

points using the present model. Also shown in the figure is
the design operating point, and a line representing the
locus of normal operating points in an engine environment _

for a range of throttle positions (i.e. heat addition levels).

The arrangement of the transient simulation is shown in

block schematic form in Fig. 4. The valve attached to the

exhaust port (4) is described in Appendix 2. It is assumed

to exhaust to standard atmospheric conditions. The wave
rotor inlet is assumed to be at conditions representative of

the upstream compressor exit. In this numerical 'test cell'
environment the exhaust valve area and heat addition can

be independently altered (i.e. they are inputs) and any other
wave rotor variable of interest can be monitored. In

addition the combustor, valve, and center cavity volumes
can be altered in order to isolate their effect on transient

phenomena.

Transient Responses to Step Inputs

The computed wave rotor response to a step change in heat

addition is shown in Figs. 5 and 6. The model ran for 20
msec. of simulation time at the design point. At that time

the heat addition rate was abruptly cut to half of the design
value. At 200 msec. of simulation time the heat addition

rate was abruptly raised back to the design value and held
there for the remainder of the 400 msec simulation. The

ratios of passage volume to the center cavity, combustor,

and valve volumes in Equs. 11, 12, and 23 were 0.0093,

0.0037, and 0.018 respectively. The mass flow rates in
each of the ports are shown in Fig. 5. These have been

normalized by the inlet (port 1 in Fig. 1) area, stagnation

pressure, and stagnation temperature as in Eqn. 16. For the

inlet only, this is the corrected flow and corresponds to the

x-axis of Fig. 3. Figure 6 shows non-dimensional

stagnation pressures and temperatures in the combustor and
exhaust port. Since the inlet stagnation state has been used

to non-dimensionalize, the exhaust pressure in this figure

5
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Figure 7 Step heat addition transient port mass flow rate
summation

corresponds to the y-axis of Hg. 3. The simulation data
was output at a time interval of 0.01 msec (every 6 non-
dimensional time steps) then smoothed using a 5 point
average in order to partially remove the high frequency
oscillations which occur due to finite passage opening time.
For reference, one rotor revolution (two wave cycles) is

approximately 3.6 msec. The transient behavior seen in
this simulation example is due almost entirely to the
volume dynamics associated with the combustor, center
cavity, and valve. That is to say that the wave rotor is
essentially operating in steady-state even though the inlet
and exhaust mass flow rates do not match one another, nor

do the flow rates to and from the combustor. This may be
seen in Fig. 7 which shows the sum of the normalized mass
flow rates to and from all of the ports as a function of time.
The upper plot shows the entire simulation period, while
the lower plot shows only the first 52 msec. If mass were
being stored in the wave rotor (or center cavity), this sum
would be large; however, it is seen that the sum never
exceeds 0.02, whereas the difference between inlet and
exhaust mass flow rates (Fig.5) reaches values as high as
0.1. The relatively fast response of the wave rotor itself
can be seen on the lower plot of Fig. 7 between 20 and 23
msec. The first minimum on this plot (between 20 and 20.5
msec.) represents the readjustment time of the waves. The
maximum which follows, of somewhat longer duration,

represents the convection time for a particle passing
through the rotor. The remaining transient response is due
to the volume dynamics of the center cavity.

It is interesting to note that during this transient operation
the combustor pressure (i.e. the compression portion of the
cycle) decreases with decreasing inlet flow when the heat
addition rate is reduced, and vice versa when the heat
addition rate is increased. In a conventional gas turbine

engine, the initial transient behavior would be the opposite

Figure 6 Step heat addition transient pressures and

temperatures

6
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way.

The wave rotor mass flow, pressure, and temperature

response to a step change in the exhaust valve area are
shown in Figs. 8 and 9. As in the previous simulation the

model ran for 20 msec of simulation time at the design

point. At that time the exhaust valve area was abruptly cut

to 80% of the design value. At 200 msec of simulation

time the valve area was abruptly increased back to the

design value and held there for the remainder of the 400
msec. simulation. The ratios of passage volume to the

cavity, combustor, and valve volumes were the same as in
the previously described simulation. Fig. I0 shows the

same type mass flow summation as Fig. 7. Again it can be

seen that the response of the wave rotor is very fast relative
to the various volume dynamics. With regard to Fig.3, it

can be seen that both this and the previously presented

transient represent situations in which the wave rotor is

operating far from the normal range. It is encouraging

from a modeling perspective that the simulation can
calculate such severe transients. More importantly

however, it is encouraging that the wave rotor appears to be
so robust.

Instabilities

Although it is not yet possible to experimentally verify the
results of the wave rotor model described above, it is at

least possible to see if it follows expected dynamic trends.
One such trend would be a phenomenon akin to surge

which, with reference to Fig. 3, would occur when the wave

rotor is operating somewhere on the far left side of the
constant heat addition curves where the slopes of the

performance curves are positive _2. It should be pointed out

that this region is far from the normal operating regime of
the wave rotor. Furthermore, steady-state results indicate

that long before it could reach this point the combustor

temperatures would become unacceptably high (i.e., 5
times the inlet temperature). Nevertheless, attempting to

operate the model here provides a good test for the

7
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Figure 12 Unstable surge pressures and temperatures

numerics. Figures 11 and 12 show a time l_story of the

port normalized mass flows, pressures, and temperatures
during a simulation which began at the design speed and

heat addition rate, but with the exhaust valve area set to

58% of the design point value. The valve position at which

this instability begins is dependent on the combustor and

valve (and possibly center cavity) volumes. It was found

that the simulation was stable at this operating point for the

passage to volume ratios used in the previous simulations.
The exact relationship between volume sizes and the onset

of this instability has not been fully explored; however, it

was found that decreasing the combustor volume and

increasing the valve volume both appear to shift the point

of instability further to the right of Fig. 3 (i.e., larger

exhaust valve openings). Thus, the data for Figs. 11 and 12
were obtained by first running the simulation to steady state

using the original center cavity, combustor, and valve

passage to volume ratios of 0.0093, 0.0037, and 0.018

respectively. The passage to volume ratios of the

combustor and valve were then changed to 0.037 and

0.0062 respectively and the simulation was restarted with
initial conditions from the last time step of the stable

simulation configuration. Fig. 12 shows stagnation

pressure and temperatures in the combustor and exhaust

ports for this simulation. Since the combustor temperature

reaches very high values it was necessary to substantially
reduce the size of the time step in the compufional scheme.
It was found that a non-dimensional value of 0.0015

(compared to 0.006 used in the other simulations)

maintained a stable computational scheme.

Freewheeling Rotor

The results shown thus far are for a wave rotor which runs

at constant speed and is thus driven by some external
source. It is possible however for the wave rotor to be self-

driven or fi,eewheeling". If bearing drag, friction between
the rotor and endwans, and friction between the rotor and

casing are neglected then the only source of torque on the
rotor arises from the flow turning required to bring flow on

board the rotor from the ducts. At the design point, the

inlet ducts would be so angled such that this would

presumably be zero. At any other operating point however,
the rotor will either acclerate or decelerate until the net

torque is zero. In this mode of operation the corrected
speed becomes a dependent variable and Eqn. 17 becomes

absolutely valid. It is noted that in steady-state operation

there is no guarantee that the speed which the rotor settles

out to at any operating point (other than the design point)

is optimal as far as the timing of the internal wave
processes. Fig. 13 shows the steady-state performance map

for the fieewheeling version of the same wave rotor used in

the fixed speed examples. Note that the design points of
the two rotors are the same.

Figure 14 shows the wave rotor response to a step 50%
reduction in the heat addition rate initiated 2.0 msec after

the simulation began. The time scale of this simulation is

very long in comparison to the others which have been

shown previously. This is due to the relatively slow rotor
inertial dynamics which are made even slower by the fact

that the flow turning process generates fairly low torque
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Figure 14 Step change in heat addition transient,

freewheeling wave rotor

(unlike conventional turbomachinery in which torque is the

primary means of work transfer). In order to produce the
data for Fig. 14 without using excessive computing

resources, a very crude computational spacing of Ax=0.1

was used with a corresponding time step of At=-.03.
Furthermore, the data was output only every 0.36 reset.

No systematic study has been performed to date on the
model to determine the 'best' grid resolution for simulation

purposes; however, it is believed that these values of the

time step and spacing are sufficient to reasonably
demonstrate the rotordynamic phenomenon of interest here.

The inertia of the rotor was estimated using steel with a

density of 7860 kg/m 3 and assuming that the only

contributing mass was that of the inner and outer cylinders
of the rotor. These were taken to be 0.76 cm. in thickness.

The figure shows plots of the inlet corrected flow rate, non-

dimensional combustor pressure, rotor corrected speed, and
the summation over all of the computational cells of the

rates of change in non-dimensional wall temperature. This

last plot is included as a very crude measure of the

predicted time scale of the heat transfer effects in the wave
rotor. The fact that a relatively large gradient still exists at

the end of the simulation indicates the scale is considerably

longer than even the rotor dynamic time scale, which is
itself two orders of magnitude larger than the volume

dynamic time scales, and three to four orders larger than

the gasdynamic time scales.

It can be seen in Fig. 14 that the wave rotor performance is

fairly insensitive to changes in rotational speed. Thus,

although the rotor speed does not reach steady state until 8

sec. after the step reduction in heat addition rate, the

combustor pressure and inlet flow have reached nearly

steady state values in the same approximately 50 msec.

time frame as the previous fixed speed transient examples.
This is in contrast to a conventional turbomachinery core

which would require time scales on the order of seconds to

complete the same transient.

Concluding Remarks

A numerical model has been described which is capable of

computing both steady state and transient flow fields in a
wave rotor. Since it is a one dimensional model it is

relatively fasL The grid resolution used for the constant

speed simulations required approximately 143 seconds of
CPU time for each millisecond of simulated time on a

StmSPARC l0 workstation. The freewheeling simulation

ran at approximately 25 times that rate due to a 5 times

increase in the time step size and a 5 times reduction in the
number of computational cells. Although no experimental
transient wave rotor data is available with which to

compare, the model predicts results which qualitatively

meet expectations, including the onset of instabilities in
the far off-design operating regime.

The preliminary results presented in this paper suggest that

the wave rotor response to transient input is an order of

magnitude faster than the external volume dynamics and
approximately 3 orders of magnitude faster than the

freewheeling rotor dynamics. Furthermore, it appears that

the wave rotor is stable over a wide range of transient

operations.

Ultimately, the dynamic performance of the wave rotor
topping cycle can only be properly assessed in an

integrated engine simulation environment since the

behavior of the surrounding turbomachinery will have a

large influence on the wave rotor. This is the intended
direction of future research in the type of one-dimensional

modeling presented in this paper.
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Mixing calculations in the outflow ports account for the
losses incurred due to non-uniformities in the flow. Flow

in inlet ports is assumed isentropic. The non-uniformities
accounted for in the mixing calculation arise from several

sources including passage opening and closing, mistimed

waves impinging on the port during off- design operation,

and broad expansion waves which, even on-design, reflect

from some ports and cause non-uniformities in the velocity

profile. In off-design situations the flow emerging from the
rotor must also be turned by the port walls since it is not

necessarily aligned with them. The two processes (mixing
and turning) generally occur simultaneously and may

require a length many times the port width to be completed.

In the model they are assumed to occur separately.

Furthermore, since there is no accounting at present for the

duct length leading from the ports, they are assumed to
occur instantaneously. The mixing process is assumed to

occur in the rotor frame of reference and the turning

process is assumed to be isentropic. These simplifications,

though quite extreme, have yielded good results when

compared with experiments (at least in steady-state

operation). The non-dimensional mixed relative static
conditions are obtained as follows

_
(_,+1)¢.

- _=

Pr- N'_" r

(18)

where

N

0,, e _ PoUo

" [ ,tX . JA,,  .,tY " J (19)

Here, the subscript 0 refers to the image cell adjacent to the

port. The subscript e in the expression for _,o refers to a

fictitious exit plane of the image cell when the passage is

partially open (see Fig. A1 and Ref. 6). The summations
occur over those passages which are exposed to the port, N

and the subscript po refers to those passages which are

partially open. The ratio of Ae to Ap is that of the passage

area exposed to the port to the fully open area. The
absolute stagnation quantities are then obtained from the

mixed, relative quantities using

10
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The mixed absolute static conditions (i.e after turning) are

obtained as follows. Referring toFig. A2, which shows a

port and the approaching mixed relative flow, the following

steady continuity and energy equations may be written

PrUr

p.u. cos(_)
--2

P'4¥-1 u, _ To .
_. 2 2

(21)

Using the iscntropic relation p = constant, and combing
pV

eqns. 19, the following equality may be written

qlP, v +q2P_-T°=O
I

P,
(22)

Ap_ndix 2 Numerical Valve Simulation

The wave rotor exhaust valve and associated plenum are

simulated in much the same fashion as the combustor.

Since there is no heat addition however, and the only

variable of interest is the static pressure at the port exit,

only the energy equation is used. It is written as follows

n., . (bhL_TO {_lq:[FI_.M.,.s_p. =p.+tv=)

¥'t b'_'h'-J'_l °i[ P.)

(23)

where the subscript ex refers to the exit port (port 4 in Fig.

1), and the subscript ve refers to the valve exit, which is

taken to be standard atmosphere in this case. The function

f is the same St. Venant's equation described in Eqn. 6.

The updated pressure in this equation is used as an outflow
boundary condition for the passages which are exposed to

the exhaust port (port 4 in Fig. 1).

The roots of this equation (found easily using Newton

iteration) are the sub and supersonic values of the absolute

static pressure. The sub-sonic value is chosen and the

absolute static density and velocity are found using eqns.
19.

11
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